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Department of Atomic Physics, Eotvos University, H-1088 Budapest, Hungary 

Received 2 June 1989 

Abstract. We investigate how patterns of different acquisition strengths influence each 
other’s stability. A neural network model with two strictly stable patterns stored on a noisy 
background is studied by a novel approximation of short-time dynamics that singles out 
coherent contributions systematically and uses a Gaussian approximation for incoherent 
sums. The basin of attraction of the weaker pattern is found to shrink depending on the 
two acquisition strengths. For a diluted Hopfield-type version of the model the weaker 
pattern may become unrecognisable. 

1. Introduction 

The dynamics of adaptable neural networks close to an attractor corresponding to a 
stored ’pattern’ is dominated by an interplay between signal and noise. Signal is the 
modification of connection strengths storing information about the ’patterns’, whereas 
noise is of twofold origin: partly quenched into the same connection strengths by the 
presence of patterns other than the one corresponding to the given attractor, partly 
’thermal’ and belonging to the dynamical law. 

The simplest versions of the model (Hopfield 1982) are open to an analytical 
treatment (Amit er cil 1986). The basic fact about a model with a number of equivalent 
random stored patterns is a sharp forgetting phase transition in which the attractors 
associated with the individual patterns become unstable at a given level of noise of 
both origins. For this reason, a signal-to-noise analysis has often been used to obtain 
rough information about the expected forgetting transition in various versions of 
the model. The most sophisticated quantitative elaboration along this line is the one- 
pattern network (OPN) model (Krauth er nl 1988) in which randomising all information 
beyond a few parameters pertaining to one of the patterns is shown to cause only slight 
modifications of the dynamics close to the corresponding attractor. 

There are indications, however. that the validity of this signal-to-noise or one- 
pattern philosophy is restricted to the case of equivalent patterns. This refers in 
particular to the learning-within-bound model, in which recently taught patterns grad- 
ually erase the older ones. Although qualitatively this effect can be accounted for 
(Nadal er a1 1986, Parisi 1986) by the reducing signal level against a steady noise 
background, more quantitatively (Mezard er a1 1986, Geszti and Pazmandi 1987) the 
dominant physics is seen to be different: old patterns become unstable with respect to 
the fresh ones which attract the dynamical flow from an old pattern above a critical 
ratio of the amplitudes of the two. 
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The present paper is motivated by these observations. Here, however, we study 
mostly strict-stability networks like those produced by the 'Minover' algorithm (Krauth 
and Mkzard 1987), which is easy to extend to patterns of unequal acquisition strengths. 
In this case finite, although different, stabilities for each stored pattern are sustained 
by construction, and the effect described above is transformed into a shrinking of the 
basin of attraction of the low-stability patterns. The behaviour of such models is then 
compared with that of the asymmetrically diluted Hopfield model (Derrida et al 1987) 
for two different patterns. 

As a technical tool to obtain detailed insight into the dynamics of such cases, the 
original one-pattern network is extended to take two patterns of different stabilities 
into account. For this case the temporal variation of the overlaps with the two patterns 
and that of the distance between two initially close configurations are studied in the 
presence of thermal noise, by means of a novel technique utilising the trick of linearising 
in small but coherent contributions to a local field acting on a neuron (Peretto 1988). 
This, starting from the simple no-symmetry case (Krauth et al 1988, Crisanti and 
Sompolinsky 1988, Gutfreund et a1 1988, equivalent to the solvable asymmetrically 
diluted model of Derrida et al 1987), allows one to single out dominant coherent 
corrections due to a specified symmetry of the connection strengths. As a result, 
closed formulae can be obtained for arbitrary asymmetry and temperature, containing 
integrals over a Gaussian distribution of a dimensionality growing with time. 

2. Description of the two-pattern model 

In what follows we generalise the one-pattern model (Krauth et a1 1988) to the case 
of two patterns (,' and (: (two-pattern model: TPN) of given stabilities AI and A2 
independent of the neuron i (i = 1 . . . N ) ,  and a given value of the coupling symmetry 
parameter v :  

where the connection strengths J, = kN-1/2 satisfy the above constraints but are 
otherwise random. As a further simplification, we assume that the two stored patterns 
are orthogonal. 

Two features of the above model are responsible for the relative simplicity of its 
dynamics to be described below. Firstly, the required strict site-independence of the 
stabilities A,  and A2 guarantees a property of restricted self-averaging (see equation 
(10)). Secondly, since there are only two patterns and noise here, all gauge-invariant 
combinations of the couplings beyond A , ,  A2 and q (e.g. the triple coupling Zj,& Ji jJ jkJki  
that would make the calculation much more complicated although not impossible) 
vanish in the thermodynamical limit, which is always taken in our calculation, at least 
as fast as N-'12 .  It  is easy to see that none of these important simplifying features is 
present in the Hopfield model. 

In the same way as the one-pattern model (Krauth et al 1988) gives a faithful 
representation of the dynamics of strict-stability networks with patterns of equal 
acquisition strengths, the TPN is expected to give insight into how such networks with 
unequal pattern stabilities work. 
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3. The dynamics of the model 

3.1. Parallel dynamics: dejnitions 

At time t the configuration of the model is characterised by a vector S' = { S : } .  We 
start by generating initial configurations out of a distribution 

specified by the initial values m ,  of the overlaps with the stored patterns 

Let those configurations evolve by parallel dynamics at temperature T and investigate 
the change of some average properties, like the overlaps themselves. 

Parallel dynamics of the model (Little 1974) proceeds in independent simultaneous 
single-spin flips after which the probability of a given value Sf at time t is given by 

zf = 1 JijS,' 
I 

This defines a Markovian evolution of the probability distribution P,  (S') with the 
transition probability 

In order to calculate the time evolution of the overlaps (3), where 

(S!) = TrStSfP, (S') 

= Trs:SfP, ( S f )  

we need an approximate expression for 

PI ( S f )  = TrS,-l . S l - ~  . . .  W(S: 1 St- ' )  W(S'-'  I . . W ( S '  I So)P, (SO). (8) 

As we shall see below, dynamics are dominated by the parameters A l ,  A2 and q 
defined in section 2. These parameters are site independent. Therefore we expect ( S f )  
to depend on i only through the values of (,' and <,! at the same site i. Since these 
are binary variables, ( S : )  can be written as a linear function of them. Moreover, this 
function is homogeneous because it is multiplied by -1 if both of its arguments have 
been. Then its two coefficients are determined by the orthogonality of the two patterns, 
which gives the important formula 
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which inverts equation (3).  The same reasoning holds for all gauge-invariant quantities, 
which are therefore self-averaging and can be calculated by averaging over the random 
patterns instead of over sites: 

-? LE... -+ (...)‘ 
i 

N 

We emphasise that this holds only for the restricted class of strict-stability models with 
site-independent stabilities as discussed in section 2.  

3.2. The,first two time steps 

For t = 1 a straightforward application of equations (3), (7), (8) and (4) gives 

m, (1) = ( (5; f ( zp) ) ) t . ,Z  (1 1) 

where ((. . . ) ) t % z  means averaging over patterns and a distribution of the random sums 
z: defined in equation (5). By the central limit theorem, zp is a Gaussian random 
variable. Its mean value xp and squared dispersion Do can be calculated from equation 
(9) 

Then 

Let us turn to the next time step, t = 2. By equation (4), we have to average 
over the conditional distribution P ( z !  I So) .  Now, the conditional mean value ( z ! ) p  = 
Cj Jlj(Si)p is determined iteratively, by the first time step as calculated above. Here, 
however, due to the sum weighted by Jlj, an important coherent contribution arises. 
To see this. in 

(S;)p = ( ( f ( z ; ) P ( z p  I SO))) (15) 

let us single out from z f  = Ck J,& both its mean and the fluctuation of the term 
k = i :  

(16) 

(explicitly adding one fluctuation term gives a negligible change in Do),  and linearise 
f ( z p )  in the JII term which is small since JII cc N - ‘ l 2  whereas z,” = O(1): 

z; = x; + J,l(Sp - (SP)) + J D o y  

cz;) z f(x; + A Y )  + J,lf’(x; + JDoY)(SP - (SP)). (17) 
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Substituting into z,' (see equation (5)), the j summation gives a contribution 
proportional to q (equation ( l ) ) ,  which is [((l), expressing the dominant influence of 
the initial value of a given spin SI  on its own mean value two time steps later, through 
the correlation between J,, and J I I  expressed by q # 0. 

The rest of the calculation is trivial and gives 

where 

(based on the estimate &J,,J,,J,, = Cf(N-' *) which is not true, e.g., for the fully 
connected Hopfield net; see Gardner et al 1987), and 

(21) v,, = (cr'cxp + JD,Y))). 

3.3. t > 2: the framework 
For longer times we have to do some bookkeeping of correlations due to coherent 
terms mediated by the symmetry q ,  always connecting the same spin two time units 
apart. They appear in two different forms: explicitly for t - 2, t - 4 . .  .; implicitly as 
Gaussian noise cross-correlations for t - 1,  t - 3 . .  , 

Anticipating this structure, let us rewrite equation (8) in the form 

where 
P(Sr-1, . . .  1 s,'-2, sf-". .) 

= TrS-?,S-4 01 / / I " '  W(S'-'  1 Sf-*) W(S;n2  1 Sr-3)W(S' -3  1 Sr-4) W(S; i4  1 . . . (23) 

is the conditional probability distribution of the spin variables Pi, Sr-3 . . ., and Sii, is 
a vector of N - 1 components with the i component omitted. 

At this point we notice from equations (4) and (5) that W(Sf I 9 - l )  depends 
on SI-' only through the variable 2: .  Therefore the conditional probability of spin 
vectors defined in equation (23) can be contracted into that of n scalar variables 
P,,(zj-l, ~ f - ~ .  . . 1 Sf-2, Sf-". .), and the trace over S'-', S ' - 3 . .  . becomes an average over 
this distribution function. 

Using the restricted self-averaging property, equation (lo), and defining the double 
average (already used in $3.2) as 

(24) 

starting from equation (3) and carrying out the trivial trace over S;, our final result 
will appear in the form 

(25) 
Our next task is to obtain an explicit expression for the conditional probability 

-r 

((. , .)) = d~: - Idzf -~ .  . . P , , ( z ; - ' , ~ f - ~ .  . . 1 S:-2,Sf-4. ..)(. . .)' 

m,.(t) = Trs:-~.S:-4,,,((5~f(zI-1)W(Sf-2 I z ~ - ~ ) W ( S / - ~  I z f P 5 ) .  ..)). 

distribution P,. 
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3.4 .  t > 2 :  calculating the noise distribution 

Since J , ,  = 0 (see equation ( l ) ) ,  none of the terms in z: = E, J,,S,' for a given time T 

is immediately correlated with S,' for any time. Some harder content to this intuitive 
statement is that the evolution of any Sy is influenced by that of many spins S i ,  among 
which only k = j has a distinguished role, k = i is just one out of many. 

For this reason we expect i t  is reasonable to approximate the joint distribution of 
variables z: for different values of T by a multidimensional Gaussian 

P,(z:-',z;-3.. . 1 s y ,  s:-". .) 

where 

(here ( . . . ) , j l  means that, on calculating the average, S:-2, S:- ' . . . .  have fixed values), 
and 

in which the same restriction does not have to be taken into account explicitly since its 
effect is negligible in the thermodynamic limit. Finally 1 D 1 denotes the determinant of 
the matrix DTT8.  

The rest of our task is to determine the parameters x: and DTTt  for T , T '  = 
t - 1, t - 3 . .  .. We expect terms due to strong correlations induced by the symmetry 
of coupling coefficients and proportional to 7 arising in two kinds of terms: in x i  as 
corrections due to the constraint that S,'-2, Sf-". . are fixed, and as the non-diagonal 
elements of which would not appear at  all without this effect. All such terms drop 
out in the case = 0, which is then equivalent to the diluted model of Derrida er a1 
(1987). 

Let us start with 

. . .] dz j -*d~f -~  . . . [Si-] 1 + S,t-'f (zj-2) 1 + S;-3f (zj-4) xi-' = xJ i jTr , , - ,  + 
1 ( 1  "' 2 2 

j 

x P(zj-2, zj-4.. . I sj-3,4-5 , . . ; q - 2 ,  s;-4.. .). (29) 

As above, the multivariate distribution P can be approximated by a Gaussian and 
one has to calculate its mean value vector and dispersion matrix. All that would be 
already known iteratively from the results determined for earlier time steps, apart from 
the extra constraint of fixing previous values of a variable different from Sj ,  namely, 

The effect of this extra constraint on the dispersion matrix is easily seen to vanish 
in the N -+ x limit, even after all summations have been carried out. The shift it causes 
in the mean values, however, has to be retained because on the operation cjJ i j . . .  

of S;. 
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it gives a coherent contribution proportional to q (as in the t = 2 calculation after 
equation (14)). Indeed, to work out the first of the doubly constrained averages arising, 

I 

The integral in (29), then, differs from those appearing in equations (24) and ( 2 5 )  
only by shifting the centre of the Gaussian by the extra J,[ term in equation (30) and 
its homologues for t - 4, etc. As already exploited in section 3.2, this shift is small since 
J,, = L‘ ( IV-”~)  ; therefore-after accordingly shifting the integration variables-one can 
linearise the functions f ( z : )  to obtain 

r=r-?.r-4 ... \ ir / 

(and analogously for xi-’, etc), where 

and we have used equation (9) along with the fact that in the last term of equation 
(30) the constraint of fixed Si on the average gives an K(IV-”*) correction for the two- 
pattern network (cf section 2) and can be neglected. Equation (32) can be rewritten 
into the elegant, but not particularly useful, form 

Let us turn to the determination of the dispersion matrix By now it should 
be clear, and it can be confirmed by detailed calculation, that the only non-vanishing 
matrix elements are those for which ~ T - T’ I= 0,2 . .  ., and even for that, in the double 
sum of equation (28) only the j = k terms contribute, the others summing to just 
e‘(N”’2) . Thus 

where 

and the double-time distribution function P, is defined analogously to equation (22), by 
omitting the trace over both S/’ and S,”. In the Gaussian approximation, for example, 
for T > T’ it gives 
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where P is a Gaussian with parameters already iteratively determined in the earlier 
time steps. In particular, the diagonal elements are 

To illustrate the above formalism, we give the formulae pertinent to t = 3, to be 
added to the list of equations (18) to (21): 

Treating longer times is straightforward, apart from the need to calculate averages 
over Gaussian distributions of more and more dimensions. 

4. The 11 = 0 case 

In the zero-symmetry case, as already noticed by various authors (Krauth et a1 1988, 
Crisanti and Sompolinsky 1988, Gutfreund er al 1988), the dynamics will be simple 
and solvable. For the present model, as for the one-pattern case (Krauth et a1 1988), 
this happens because not only do the noise centre shifts in equation (31) vanish, but so 
do all the non-diagonal elements of D,,, (the connected correlation functions between 
different time values). By the method used in the present paper this can easily be 
proven in two steps: one demonstrates that (i) qO, = & m , m , ( t )  i.e. Do, = 0 V T  # 0; 
and (ii) the vanishing of non-diagonal elements propagates from (z - 1,z'- 1) to (7, T'), 

which proves the assertion by induction. 
In view of this simplification one now has a one-step iteration for the overlaps. 

Moreover, the requirement of site-independent stabilities can be relaxed to that of 
fluctuating stabilities Ail,Ai2 of the same distribution P(Al,A2) on all sites. Then the 
iteration is 

where z is a Gaussian variable of zero mean and unit dispersion, and 
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under the normalisation 

C.1; = 1. (44) 

For the TPN model defined in equation (1) A, and A2 are sharply determined and 
&z is the only noise disturbing the pattern retrieval. Then for = 0 

with 

given by equation (43), which expresses an important property of such strict-stability 
networks: the reduction of the noise level as any of the patterns is approached by the 
spin configuration. 

The same effect does not work in Hopfield-type asymmetrically diluted networks 
where the stabilities have a Gaussian distribution, which adds noise terms of ampli- 
tudes proportional to m,(r) and mz(t) .  This-for the case of Hebb-rule learning-just 
compensates the noise reduction terms in equation (43) and for the evolution of m,,(t) 
we obtain an equation of the same form as equation ( 4 9 ,  however, with Do replaced 
by 

D = 1. (47) 

This enhanced noise level is the main reason why patterns in Hopfield-type networks 
have to be kept at a rather high level of stability to assure any retrieval. 

5. Two-pattern dynamics 

For the simpler case = 0 we distinguish the TPN defined in equation (1) in which the 
pattern stabilities are site-independent, and the asymmetrically diluted Hopfield-type 
network model of Derrida er al (1987) in which they are of Gaussian distribution. 
The evolution of one-pattern dynamics is described in both cases by equation (45). 
However, the noise level D is different in the two cases: reduced close to the patterns 
for TPN according to equation (46); constant for diluted Hopfield according to equation 
(47). 

This difference has a decisive influence on the dynamics of the two models, as 
displayed in the illustrative trajectories (figures 1 and 2), summarised in the phase 
diagrams of figure 3. Different 'phases' are characterised by a different pattern of 
fixed points of different types. Such fixed points being located from equation (45) as 
solutions to m,.(t + 1)  = m, ( t )  = m3, their character can be inferred from linearising the 
system of equations (45) for v = 1,2 around such solutions. Then in the phase diagram 
on the A , , A 2  plane a phase boundary indicates the change of stability of a fixed point 



5126 F Pazmandi and T Geszti 

m2 

1.0 
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\....'I A 2 :  2.0 

I ' 1  

o.8 fi.i A , =  A 2 =  1.2 1.3 1 
0.6 I 
0.4 t \ 4 o,2w ' I  
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m ,  

A l = l  2 

A 2  = 2 . 2  

f 

4 

L-7 A 2 = I  15 

I 

3 I 
0 0 2  0 4  0 6  0 8  1.0 

m1 

Figure 1. Trajectories of a strict-stability zero-symmetry two-pattern network on the plane 
of overlaps ml and mz with the two respective patterns, for different values of the two 
stabilities: (a )  both patterns stable on and around their respective axes, (h)  the strong 
pattern attracts most initial configurations of some overlap with it and/or weak overlap 
with the weak pattern, (c) the strong pattern attracts initial configurations of weak overlap 
with the weak pattern, (d )  only configurations strongly overlapping with one of the patterns 
are recognised. 

on some of the axes in some direction, often accompanied by the bifurcation of a fixed 
point or vice versa. 

The main features can be summarised as follows. Taking T = 0 for simplicity, for 
A ,  < JTc/z and A2 < the origin is stable. However, for the diluted Hopfield 
case it is then the only stable fixed point, whereas for TPN there are also attractors for 
the patterns. For A I  > fl > A2 the origin loses its stability in the 1 direction. As 
anticipated in section 1, for the diluted Hopfield case both patterns can be retrieved 
only in a restricted region of the phase diagram bounded by a two-branch curve: 

if 

(49) m; = erf(A,m;/&) 

has a non-trivial solution, and vice versa. 
The regions of strong imbalance between A I  and A2 on both phase diagrams: 

phases b and f are those in which the anticipated effect appears most clearly, but in 
different forms in the two cases: for the Hopfield-type model the weaker pattern is 
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unstable there with respect to displacements towards the stronger one, whereas for the 
TPN the basin of attraction of the weak pattern is shrinking because of a hyperbolic 
fixed point (actually a couple of them from above and below) approaching from the 
plane. 

.. 

0 4  
m 

m 
A -  1 1  0 A l = I l  

A , = I O  --I 

I 
1 I 

-- 0.4 
m2 

m1 m1 

Figure 2. The same as figure 1 for a diluted Hopfield-type network: ( e )  both patterns stable, 
( f )  the weaker pattern is unstable against displacements towards the strong one: (g) the 
weaker pattern is fully unstable, ( h )  both patterns unstable. 

For q # 0 we state here only preliminary results. These seem to indicate that- 
slightly differing from the statement of Krauth et al (1988)-it is not the high stabilities 
but the vicinity of a decision surface which renders a trajectory very sensitive to a change 
of q (figure 4). There is also some indication that in such places the evolution of m,,(t) 
may be an average over very different individual trajectories. The q-dependence 
of the evolution can be studied advantageously by calculating the distance of two 
configurations (Derrida et a1 1987, Gardner et al 1987). Our method is applicable to 
this task too; the calculations are currently in progress. 

As a feature pertinent to our starting problem: the loss of retrievability of a pattern 
because of the presence of a stronger one, q # 0 seems to promote the deterioration 
of the weaker pattern. If  this is an undesirable feature, then this is another reason for 
looking for learning algorithms balanced close to q = 0 (Krauth et al 1988). 

6. Discussion 

The effect mentioned in section 1, namely the competition between two patterns of 
different stabilities, has been studied here mainly for the zero-symmetry case which is 
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Figure 3. Phase diagrams of two zero-symmetry two-pattern networks: (a) strict stability, 
( h )  diluted Hopfield (phases are denoted by letters referring to figures 1 and 2, indicating 
the different types of trajectories). 

0.6 1 
I 

A2=1.3 

0 0.2 0.4 0.6 0.8 1.0 
mi 

0 0.2 0.4 0.6 0.8 1.0 

Figure 4. Some trajectories for non-vanishing symmetry of the connection strengths (num- 
bers are the values of the symmetry parameter q defined in equation ( 1 ) ;  fixed points 
pertinent to q = 0 are shown for orientation). 

solvable like the diluted Hopfield-type model, and differs from the latter only by the 
effect of noise reduction close to the pattern configurations. 

We have presented a novel method applicable to the study of the case of arbitrary 
symmetry up to arbitrarily long times, at the expense of calculating multidimensional 
integrals over a Gaussian distribution. The consequences of non-vanishing symmetry 
on the dynamics with patterns of different acquisition strengths will be exploited in 
further work. 

Our method can be extended to the case when higher-order coupling loops like 
J, ,J , ,J , ,  are non-vanishing. For a non-vanishing symmetry of the couplings it is 

more difficult to do without the beneficial self-averaging effect of the site-independence 



Dynamics of a two-pattern neural net 5129 

of the gauge-invariant coupling combinations (equation (10)). 
As pointed out by Virasoro (private communication), there can be a broad analogy 

between the loss of stability of a weak pattern in the presence of a strong one as 
discussed here, and the so-called regularisation observed in some patients suffering 
from dyslexia and modelled through a lesioned feed-forward neural network (Virasoro 
1988, 1989). In these cases the network loses its ability to associate exceptional responses 
to exceptional patterns in the presence of a dominant rule covering most patterns: all 
patterns create a response obeying the strong rule. Further work is needed to decide 
whether the connection between the two phenomena is more than superficial. 

Acknowledgments 

We are indebted to Jean-Pierre Nadal for most helpful discussions in the initial stage of 
this work and for encouragement, and to M A Virasoro for pointing out the possible 
connection with the regularisation problem. TG is indebted to Professors Roger Serneels 
and Marc Bouten for their hospitality at Limburgs Universitair Centrum, Diepenbeek, 
Belgium, where the idea of this work arose. Our work was partly supported by the 
Hungarian Research Foundation OTKA, contract No 31501 13. 

References 

Amit D J, Gutfreund H and Sompolinsky H 1987 Ann. Phys. .  N Y  173 30 
Crisanti A and Sompolinsky H 1988 Phys.  Ret .  A 37 4685 
Derrida B, Gardner E and Zippelius A 1987 Europhys. Lett. 4 167 
Gardner E, Derrida B and Mottishaw P 1987 J .  Physique 48 741 
Geszti T and Pazmandi F 1987 J .  Phys.  A :  Math. Gen. 20 L1299 
Gutfreund H, Reger J D and Young A P 1988 J .  Phys.  A :  Math. Gen. 21 2775 
Hopfield J J 1982 Proc. Nat l  Acad. Sci. U S A  79 2554 
Krauth W and Mezard M 1987 J .  Php. A :  Math. Gen. 20 L745 
Krauth W, Nadal J-P and Mezard M 1988 J .  Phys. A :  Math. Gen. 21 2995 
Little W A 1974 Math. Biosci. 19 101 
Mezard M, Nadal J-P and Toulouse G 1986 J .  Physique 47 1457 
Nadal J-P, Toulouse G, Changeux J-P and Dehaene S 1986 Europhys. Lett. 1 535 
Parisi G 1986 J .  Phys.  A :  Math. Gen. 19 L617 
Peretto P 1988 J .  Physique 49 71 1 
Virasoro M A 1988 Europhys. Lett. 7 
__ 1989 J .  Phys. A :  Math. Gen. 22 2227 


